

Single-Frequency Fiber Coupled 14-Pin BF

Innovative Photonic Solutions' single-mode wavelength stabilized laser features high output power with ultra-narrow spectral bandwidth and a diffraction limited output beam. Designed to replace expensive DFB, DBR, fiber, and external cavity lasers, the Single-Mode Spectrum Stabilized Laser offers superior wavelength stability over time, temperature (0.007 nm/°C), and vibration, and is manufactured to meet the most demanding wavelength requirements.

The Single-Mode Spectrum Stabilized laser is available at wavelengths ranging from 633 nm – 2400 nm (standard wavelengths listed above), in a 14-Pin Butterfly package, in an integrated OEM module, or in a fully integrated module with user configurable temperature and power control electronics. Lasing wavelength can be accurately specified and repeatedly manufactured to within 0.1 nm. The laser is ideal for high resolution Raman spectroscopy, confocal microscopy, direct-diode frequency doubling, laser seeding, gas sensing, metrology and remote sensing applications.

	> 5.113nm 5.114nm		PEC WD POWER PK LVL	:	0.018 1.85di 3.68di	∃m		HLD /BL HLD /BL
10.0dB/D 23.7	RES:0.	Ø1nm	SENS:	1I D	A	VG:	1 SMPL	:AUTO
						ļ		
3.7REF								
iBm								
16.3								
			1					
202			1		\			
36.3								
~~~~		وفروسوريه	~~		, grafter	***	بالمريمية	~~~
56.3	1 1		-	8		:	<u> </u>	
784.00nm	TIBUT	BUI	785.0	30nm 641		0.20nm ₩8°	/D	786.00n

Typical 785 nm SS Laser Spectrum

#### Features

- High Power Single Mode (single spatial & SLM) Output
- Ultra-Narrow Spectral Bandwidth (< 100 kHz)</li>
- Stabilized Output Spectrum (< 0.007 nm/0C)
- Excellent Beam Quality (M^2 < 1.1)</li>

#### **Standard Wavelengths**

•	633 nm	•	808 nm	•	1064 nm
•	638 nm	•	830 nm	•	1064.0 nm
•	780 nm	•	976 nm	•	1064.1 nm
•	783 nm	•	1030 nm	•	1064.3 nm
•	785 nm	•	1053 nm	•	1064.4 nm

Additional wavelengths available upon request

General Optical Specifications				
Wavelength Tolerance	+/- 0.5 nm ¹			
Spectral Linewidth (Δλ)	< 100 kHz Typical			
Wavelength Stability Range	15 C - 45 C			
SMSR	35 -45 dB typical			
Fiber Options	Single-Mode			
- прег Ориона	Polarization Maintaining, Panda Type			
	IPS standard is PM slow. The "P" in			
Polarization Orientation	part number signifies PM slow.			
	Substitute "F" for PM fast			
Polarization Extinction Ratio (PER)	>17 dB, 20 dB typical			
Output Power Stability	1% typical			

General Electrical Performance Specifications				
TEC Current Limit	3.2Amperes			
TEC Voltage Limit	5.8 Volts			
Photodiode Current	30 uA			
Integral Thermistor	See Thermistor Section on p.4			



1 - If 1064.0 nm, 1064.1 nm, 1064.3 nm or 1064.4 nm is ordered, wavelength tolerance is +/- 0.1 nm. Wavelength is measured in vacuum for 1064.X

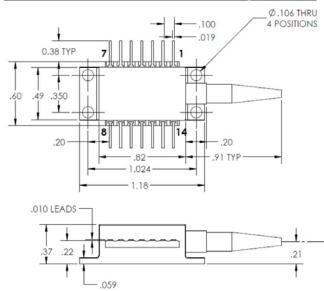
All data and statements contained herein are subject to change in accordance with Innovative Photonic Solution's policy of continual product improvement. No information contained herein is intended for use in connection with any contract except as may be first confirmed in writing by Innovative Photonic Solutions. The publication of Information in this document does not imply freedom from patent or other rights of Innovative Photonic Solutions or others.

8.18.20 SR



# Standard Part Numbers & Specifications

Wavelength (nm)	Min. Power (mW)	Part number	Max Current/ Compliance Voltage	Connector	Package Type	
633	20	I0633SB0020P	150 mA, 3.3V	unterminated	Standard	
033	20	I0633SB0020PA	150 IIIA, 5.5V	FC/APC	Standard	
638	25	I0638SB0025P	170 mA, 3.3V	unterminated	Standard	
030	25	I0638SB0025PA	170 mA, 3.3V	FC/APC	Standard	
700	F0	I0780SB0050P	220 1 2 2 1 /	unterminated	Ctandard	
780	50	I0780SB0050PA	220 mA, 2.3V	FC/APC	Standard	
700	F0	I0783SB0050P	000 4 0 0 /	unterminated	Standard	
783	50	I0783SB0050PA	220 mA, 2.3V	FC/APC	Standard	
	F0	10785SB0050P	000 4 0 0)/	unterminated	Standard	
705	50	10785SB0050PA	300 mA, 2.3V	FC/APC		
785		I0785SB0100P		unterminated		
	100	I0785SB0100PA	400 mA, 2.5V	FC/APC	Standard	
		I0808SB0050P		unterminated		
	50	I0808SB0050PA	250 mA, 2.3V	FC/APC	Standard	
000	400	I0808SB0100P	400 4 0 51/	unterminated	G	
808	100	I0808SB0100PA	400 mA, 2.5V	FC/APC	Standard	
	200	I0808SB0200P	F00 mA 0 61/	unterminated	Ctandard	
	200	I0808SB0200PA	500 mA, 2.6V	FC/APC	Standard	
000	F0	I0830SB0050P	000 4 0 01/	unterminated	Otdd	
830	50	I0830SB0050PA	200 mA, 2.3V	FC/APC	Standard	
070	000	I0976SB0220P	CFO A O O)/	unterminated	Ctandard	
976	220	I0976SB0220PA	650 mA, 2.2V	FC/APC	Standard	
976	500	I0976SB0500P	1100 mA 2 2V	unterminated	Standard	
970	500	10976SB0500PA	1100 mA, 2.2V	FC/APC	Standard	
	50 (integral dual-	I1030SB0050P-IS	500 mA 2 2\/	unterminated	Extended	
	stage isolator)	I1030SB0050PA-IS	500 mA, 2.2V	FC/APC	Exterided	
1030	100	I1030SB0100P	400 m A 2 2 V	unterminated	Standard	
1030	100	I1030SB0100PA	400 mA, 2.2V	FC/APC	Standard	
	280	I1030SB0280P	1000 mA, 2.2V	unterminated	Extended	
	200	I1030SB0280PA	1000 111A, 2.2V	FC/APC	Laterided	
	50 (integral dual-	I1053SB0050P-IS	350 mA, 2.2V	unterminated	Extended	
	stage isolator)	I1053SB0050PA-IS	330 IIIA, 2.2V	FC/APC	Exterided	
1053	120	I1053SB0120P	400 mA, 2.2V	unterminated	Standard	
1000	120	I1053SB0120PA	400 IIIA, 2.2V	FC/APC	Standard	
300	300	I1053SB0300P	1000 mA, 2.2V	unterminated	Extended	
	000	I1053SB0300PA	1000 1117 (, 2.2 v	FC/APC	Exterided	
1064.X	50 (integral dual-	I1064.XSB0050P-IS	350 mA, 2.2V	unterminated	Extended	
(substitute 0, 1,	stage isolator)	I1064.XSB0050PA-IS	000 IIIA, 2.2V	FC/APC	LAICHIGEG	
3, 4 for "X",	120	I1064.XSB0120P	400 mA, 2.2V	unterminated	Standard	
wavelength measured in	120	I1064.XSB0120PA	700 IIIA, 2.2V	FC/APC	Gianuaru	
vacuum)	300	I1064.XSB0300P	1000 mA, 2.2V	unterminated	Extended	
		I1064.XSB0300PA		FC/APC		


All data and statements contained herein are subject to change in accordance with Innovative Photonic Solution's policy of continual product improvement. No information contained herein is intended for use in connection with any contract except as may be first confirmed in writing by Innovative Photonic Solutions. The publication of information in this document does not imply freedom from patent or other rights of Innovative Photonic Solutions or others.



### **Standard 14-Pin BF Package**

# 

### Extended 14-Pin BF Package







**PM Slow** – IPS Slow Axis Standard Polarization Orientation



**PM Fast** – If PM Fast is desired, this must be specified by replacing the "P" in the part number with "F"

#### **OEM Laser Product**

This laser module is designed for use as a component (or replacement) part and is thereby exempt from 21 CFR1040.10 and 1040.11 provisions.



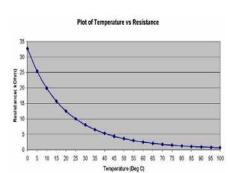






Į.	Electrical Pinout
Pin#	Name
1	TEC +
2	THERMISTOR (10K Ohm @ 25C)
3	PD ANODE
4	PD CATHODE
5	THERMISTOR
6	NC
7	NC
8	NC
9	LASER CATHODE (-)
10	LASER ANODE (+)
11	LASER CATHODE (-)
12	NC
13	CASE GROUND
14	TEC -

All data and statements contained herein are subject to change in accordance with Innovative Photonic Solution's policy of continual product improvement. No information contained herein is intended for use in connection with any contract except as may be first confirmed in writing by Innovative Photonic Solutions. The publication of information in this document does not imply freedom from patent or other rights of Innovative Photonic Solutions or others.



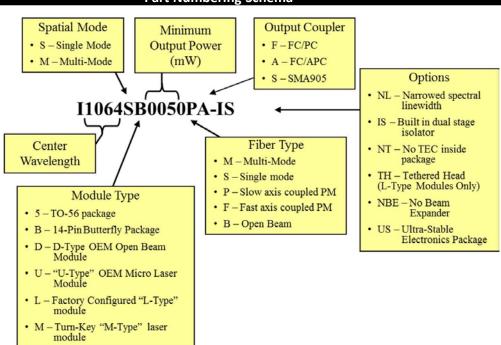

#### **Thermistor**

## Formula for calculating T based upon Resistance

1/(C1+C2*LN(kOhm*1000)+C3*(LN(kOhm*1000))^3)-273.15

#### 




[C]	[kOhm]
100	0.68 0.78 0.91
95	0.78
90	0.91
85	1.07
80	1.25
75 70	1.48
70	1.75
65	2.08
60	2.49
55	2.99
50	3.6
45	4.37
40	5.32
35	6.54
30	8.05
25	10
20	12.5
15	15.7
10	19.9
5	25.4
0	32.7

Temperature Resistance

#### **Operational Notes**

- 1. 14-pin BF should be mounted on a heat sink with a thermal compound (thermal grease).
- Laser will operate in single frequency mode at set-points between 10 and 45 degrees, however, optimal operating set point must be determined for each laser diode to avoid mode-hopping (see note 3).
- To determine optimal operating point, plot output power vs. temperature to determine where mode-hop locations are.
   Set operating temperature halfway between mode-hops.
   This will ensure the most stable operation (IPS can offer the option of determining this optimal operating point for each diode).
- Take care not to over-tighten screws when mounting. This
  can bend the BF package causing damage and hindering
  performance, and is not covered under warranty.
- Laser and TEC driver circuitry should be configured in a manner to prevent power /current / voltage surges and spikes.
- IPS recommends not grounding anode and cathode as this can cause ground loops.
- TECs require optimization of PID controller parameters in customer specific application (e.g. ambient temperature, TEC controller, heat sinking etc.) to prevent overtemperature surges that could damage the laser diode.

#### **Part Numbering Schema**



All data and statements contained herein are subject to change in accordance with Innovative Photonic Solution's policy of continual product improvement. No information contained herein is intended for use in connection with any contract except as may be first confirmed in writing by Innovative Photonic Solutions. The publication of information in this document does not imply freedom from patent or other rights of Innovative Photonic Solutions or others.